Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach
نویسندگان
چکیده
BACKGROUND One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an alternative thermal conversion technology for processing biomass. It has recently been optimized to produce a stream rich in levoglucosan, a fermentable glucose precursor for biofuel production. Additional product streams might be of value to the petrochemical industry. However, biomass heterogeneity is known to impact the composition of pyrolytic product streams, as a complex mixture of aromatic compounds is recovered with the sugars, interfering with subsequent fermentation. The present study investigates the feasibility of fast pyrolysis to produce fermentable pyrolytic glucose from two abundant lignocellulosic biomass sources in Ontario, switchgrass (potential energy crop) and corn cobs (by-product of corn industry). RESULTS Demineralization of biomass removes catalytic centers and increases the levoglucosan yield during pyrolysis. The ash content of biomass was significantly decreased by 82-90% in corn cobs when demineralized with acetic or nitric acid, respectively. In switchgrass, a reduction of only 50% for both acids could be achieved. Conversely, levoglucosan production increased 9- and 14-fold in corn cobs when rinsed with acetic and nitric acid, respectively, and increased 11-fold in switchgrass regardless of the acid used. After pyrolysis, different configurations for upgrading the pyrolytic sugars were assessed and the presence of potentially inhibitory compounds was approximated at each step as double integral of the UV spectrum signal of an HPLC assay. The results showed that water extraction followed by acid hydrolysis and solvent extraction was the best upgrading strategy. Ethanol yields achieved based on initial cellulose fraction were 27.8% in switchgrass and 27.0% in corn cobs. CONCLUSIONS This study demonstrates that ethanol production from switchgrass and corn cobs is possible following a combined thermochemical and fermentative biorefinery approach, with ethanol yields comparable to results in conventional pretreatments and fermentation processes. The feedstock-independent fermentation ability can easily be assessed with a simple assay.
منابع مشابه
Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland
Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determi...
متن کاملSimultaneous Saccharification and Fermentation of Several Lignocellulosic Feedstocks to Fuel Ethanol
Abstraet-When ethanol fuel is produced from lignocellulosic materials such as wood, herbaceous plants, and agricultural and forestry wastes, its use as a transportation fuel reduces dependence on imported petroleum, decreases the balance of trade deficit, improves urban air quality, contributes no net carbon dioxide to the atmosphere, and provides new markets for depressed farm economies. The s...
متن کاملA Switchgrass-based Bioethanol Supply Chain Network Design Model under Auto-Regressive Moving Average Demand
Switchgrass is known as one of the best second-generation lignocellulosic biomasses for bioethanol production. Designing efficient switchgrass-based bioethanol supply chain (SBSC) is an essential requirement for commercializing the bioethanol production from switchgrass. This paper presents a mixed integer linear programming (MILP) model to design SBSC in which bioethanol demand is under auto-r...
متن کاملComparison of corn and switchgrass on marginal soils for bioenergy
Crop residues such as corn (Zea mays L.) stover are viewed as an abundant and inexpensive source of biomass that can be removed from fields to produce bioenergy. Assumptions include that with minimum or no-tillage farming methods, there will be no deleterious production or environmental effects. A long-term field study was established in eastern Nebraska, USA, to compare the switchgrass managed...
متن کاملFueling America Through Renewable Resources
Introduction Biomass energy has received much attention in recent years. We now use about one third of the U.S. corn crop for biofuels. More recently, attention has focused on cellulosic resources—dedicated energy crops like switchgrass, miscanthus, and corn stover. Now the question has been raised concerning the economics of collecting just the corn cobs for energy instead of the stover. This ...
متن کامل